3.99 \(\int \frac{(a+b \tanh ^{-1}(c x))^2}{x (d+c d x)} \, dx\)

Optimal. Leaf size=77 \[ -\frac{b \text{PolyLog}\left (2,\frac{2}{c x+1}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d}-\frac{b^2 \text{PolyLog}\left (3,\frac{2}{c x+1}-1\right )}{2 d}+\frac{\log \left (2-\frac{2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2}{d} \]

[Out]

((a + b*ArcTanh[c*x])^2*Log[2 - 2/(1 + c*x)])/d - (b*(a + b*ArcTanh[c*x])*PolyLog[2, -1 + 2/(1 + c*x)])/d - (b
^2*PolyLog[3, -1 + 2/(1 + c*x)])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.165733, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {5932, 5948, 6056, 6610} \[ -\frac{b \text{PolyLog}\left (2,\frac{2}{c x+1}-1\right ) \left (a+b \tanh ^{-1}(c x)\right )}{d}-\frac{b^2 \text{PolyLog}\left (3,\frac{2}{c x+1}-1\right )}{2 d}+\frac{\log \left (2-\frac{2}{c x+1}\right ) \left (a+b \tanh ^{-1}(c x)\right )^2}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcTanh[c*x])^2/(x*(d + c*d*x)),x]

[Out]

((a + b*ArcTanh[c*x])^2*Log[2 - 2/(1 + c*x)])/d - (b*(a + b*ArcTanh[c*x])*PolyLog[2, -1 + 2/(1 + c*x)])/d - (b
^2*PolyLog[3, -1 + 2/(1 + c*x)])/(2*d)

Rule 5932

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[((a + b*ArcTanh[c*
x])^p*Log[2 - 2/(1 + (e*x)/d)])/d, x] - Dist[(b*c*p)/d, Int[((a + b*ArcTanh[c*x])^(p - 1)*Log[2 - 2/(1 + (e*x)
/d)])/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 5948

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6056

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[((a + b*ArcTa
nh[c*x])^p*PolyLog[2, 1 - u])/(2*c*d), x] - Dist[(b*p)/2, Int[((a + b*ArcTanh[c*x])^(p - 1)*PolyLog[2, 1 - u])
/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2
/(1 + c*x))^2, 0]

Rule 6610

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin{align*} \int \frac{\left (a+b \tanh ^{-1}(c x)\right )^2}{x (d+c d x)} \, dx &=\frac{\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (2-\frac{2}{1+c x}\right )}{d}-\frac{(2 b c) \int \frac{\left (a+b \tanh ^{-1}(c x)\right ) \log \left (2-\frac{2}{1+c x}\right )}{1-c^2 x^2} \, dx}{d}\\ &=\frac{\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (2-\frac{2}{1+c x}\right )}{d}-\frac{b \left (a+b \tanh ^{-1}(c x)\right ) \text{Li}_2\left (-1+\frac{2}{1+c x}\right )}{d}+\frac{\left (b^2 c\right ) \int \frac{\text{Li}_2\left (-1+\frac{2}{1+c x}\right )}{1-c^2 x^2} \, dx}{d}\\ &=\frac{\left (a+b \tanh ^{-1}(c x)\right )^2 \log \left (2-\frac{2}{1+c x}\right )}{d}-\frac{b \left (a+b \tanh ^{-1}(c x)\right ) \text{Li}_2\left (-1+\frac{2}{1+c x}\right )}{d}-\frac{b^2 \text{Li}_3\left (-1+\frac{2}{1+c x}\right )}{2 d}\\ \end{align*}

Mathematica [C]  time = 0.374449, size = 132, normalized size = 1.71 \[ \frac{a b \left (2 \tanh ^{-1}(c x) \log \left (1-e^{-2 \tanh ^{-1}(c x)}\right )-\text{PolyLog}\left (2,e^{-2 \tanh ^{-1}(c x)}\right )\right )+b^2 \left (\tanh ^{-1}(c x) \text{PolyLog}\left (2,e^{2 \tanh ^{-1}(c x)}\right )-\frac{1}{2} \text{PolyLog}\left (3,e^{2 \tanh ^{-1}(c x)}\right )-\frac{2}{3} \tanh ^{-1}(c x)^3+\tanh ^{-1}(c x)^2 \log \left (1-e^{2 \tanh ^{-1}(c x)}\right )+\frac{i \pi ^3}{24}\right )+a^2 \log (c x)-a^2 \log (c x+1)}{d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcTanh[c*x])^2/(x*(d + c*d*x)),x]

[Out]

(a^2*Log[c*x] - a^2*Log[1 + c*x] + a*b*(2*ArcTanh[c*x]*Log[1 - E^(-2*ArcTanh[c*x])] - PolyLog[2, E^(-2*ArcTanh
[c*x])]) + b^2*((I/24)*Pi^3 - (2*ArcTanh[c*x]^3)/3 + ArcTanh[c*x]^2*Log[1 - E^(2*ArcTanh[c*x])] + ArcTanh[c*x]
*PolyLog[2, E^(2*ArcTanh[c*x])] - PolyLog[3, E^(2*ArcTanh[c*x])]/2))/d

________________________________________________________________________________________

Maple [C]  time = 0.306, size = 1389, normalized size = 18. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arctanh(c*x))^2/x/(c*d*x+d),x)

[Out]

2*b^2/d*arctanh(c*x)^2*ln((c*x+1)/(-c^2*x^2+1)^(1/2))+b^2/d*arctanh(c*x)^2*ln(2)-b^2/d*arctanh(c*x)^2*ln(c*x+1
)+a*b/d*dilog(1/2+1/2*c*x)+1/2*a*b/d*ln(c*x+1)^2+a^2/d*ln(c*x)-2/3*b^2/d*arctanh(c*x)^3+b^2/d*arctanh(c*x)^2*l
n(c*x)+b^2/d*arctanh(c*x)^2*ln(1+(c*x+1)/(-c^2*x^2+1)^(1/2))+2*b^2/d*arctanh(c*x)*polylog(2,-(c*x+1)/(-c^2*x^2
+1)^(1/2))+b^2/d*arctanh(c*x)^2*ln(1-(c*x+1)/(-c^2*x^2+1)^(1/2))+2*b^2/d*arctanh(c*x)*polylog(2,(c*x+1)/(-c^2*
x^2+1)^(1/2))-b^2/d*arctanh(c*x)^2*ln((c*x+1)^2/(-c^2*x^2+1)-1)-a*b/d*dilog(c*x)-a*b/d*dilog(c*x+1)-2*b^2/d*po
lylog(3,(c*x+1)/(-c^2*x^2+1)^(1/2))-2*b^2/d*polylog(3,-(c*x+1)/(-c^2*x^2+1)^(1/2))-a^2/d*ln(c*x+1)+1/2*I*b^2/d
*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I/((c*x+1)^2/(-c^2*x^2+1)+1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/((
c*x+1)^2/(-c^2*x^2+1)+1))*arctanh(c*x)^2-1/2*I*b^2/d*Pi*csgn(I/((c*x+1)^2/(-c^2*x^2+1)+1))*csgn(I*(c*x+1)^2/(c
^2*x^2-1))*csgn(I*(c*x+1)^2/(c^2*x^2-1)/((c*x+1)^2/(-c^2*x^2+1)+1))*arctanh(c*x)^2+1/2*I*b^2/d*Pi*csgn(I*(c*x+
1)^2/(c^2*x^2-1)/((c*x+1)^2/(-c^2*x^2+1)+1))^3*arctanh(c*x)^2+1/2*I*b^2/d*Pi*csgn(I*(c*x+1)^2/(c^2*x^2-1))^3*a
rctanh(c*x)^2+1/2*I*b^2/d*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/((c*x+1)^2/(-c^2*x^2+1)+1))^3*arctanh(c*x)^2-1/
2*I*b^2/d*Pi*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/((c*x+1)^2/(-c^2*x^2+1)+1))^
2*arctanh(c*x)^2-1/2*I*b^2/d*Pi*csgn(I/((c*x+1)^2/(-c^2*x^2+1)+1))*csgn(I*((c*x+1)^2/(-c^2*x^2+1)-1)/((c*x+1)^
2/(-c^2*x^2+1)+1))^2*arctanh(c*x)^2+I*b^2/d*Pi*csgn(I*(c*x+1)/(-c^2*x^2+1)^(1/2))*csgn(I*(c*x+1)^2/(c^2*x^2-1)
)^2*arctanh(c*x)^2+1/2*I*b^2/d*Pi*csgn(I/((c*x+1)^2/(-c^2*x^2+1)+1))*csgn(I*(c*x+1)^2/(c^2*x^2-1)/((c*x+1)^2/(
-c^2*x^2+1)+1))^2*arctanh(c*x)^2+1/2*I*b^2/d*Pi*csgn(I*(c*x+1)/(-c^2*x^2+1)^(1/2))^2*csgn(I*(c*x+1)^2/(c^2*x^2
-1))*arctanh(c*x)^2-1/2*I*b^2/d*Pi*csgn(I*(c*x+1)^2/(c^2*x^2-1))*csgn(I*(c*x+1)^2/(c^2*x^2-1)/((c*x+1)^2/(-c^2
*x^2+1)+1))^2*arctanh(c*x)^2-2*a*b/d*arctanh(c*x)*ln(c*x+1)-a*b/d*ln(-1/2*c*x+1/2)*ln(c*x+1)+a*b/d*ln(-1/2*c*x
+1/2)*ln(1/2+1/2*c*x)-a*b/d*ln(c*x)*ln(c*x+1)+2*a*b/d*arctanh(c*x)*ln(c*x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{b^{2} \log \left (c x + 1\right ) \log \left (-c x + 1\right )^{2}}{4 \, d} - a^{2}{\left (\frac{\log \left (c x + 1\right )}{d} - \frac{\log \left (x\right )}{d}\right )} + \int \frac{{\left (b^{2} c x - b^{2}\right )} \log \left (c x + 1\right )^{2} + 4 \,{\left (a b c x - a b\right )} \log \left (c x + 1\right ) - 2 \,{\left (2 \, a b c x - 2 \, a b -{\left (b^{2} c^{2} x^{2} + b^{2}\right )} \log \left (c x + 1\right )\right )} \log \left (-c x + 1\right )}{4 \,{\left (c^{2} d x^{3} - d x\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x/(c*d*x+d),x, algorithm="maxima")

[Out]

-1/4*b^2*log(c*x + 1)*log(-c*x + 1)^2/d - a^2*(log(c*x + 1)/d - log(x)/d) + integrate(1/4*((b^2*c*x - b^2)*log
(c*x + 1)^2 + 4*(a*b*c*x - a*b)*log(c*x + 1) - 2*(2*a*b*c*x - 2*a*b - (b^2*c^2*x^2 + b^2)*log(c*x + 1))*log(-c
*x + 1))/(c^2*d*x^3 - d*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} \operatorname{artanh}\left (c x\right )^{2} + 2 \, a b \operatorname{artanh}\left (c x\right ) + a^{2}}{c d x^{2} + d x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x/(c*d*x+d),x, algorithm="fricas")

[Out]

integral((b^2*arctanh(c*x)^2 + 2*a*b*arctanh(c*x) + a^2)/(c*d*x^2 + d*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{a^{2}}{c x^{2} + x}\, dx + \int \frac{b^{2} \operatorname{atanh}^{2}{\left (c x \right )}}{c x^{2} + x}\, dx + \int \frac{2 a b \operatorname{atanh}{\left (c x \right )}}{c x^{2} + x}\, dx}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*atanh(c*x))**2/x/(c*d*x+d),x)

[Out]

(Integral(a**2/(c*x**2 + x), x) + Integral(b**2*atanh(c*x)**2/(c*x**2 + x), x) + Integral(2*a*b*atanh(c*x)/(c*
x**2 + x), x))/d

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{artanh}\left (c x\right ) + a\right )}^{2}}{{\left (c d x + d\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arctanh(c*x))^2/x/(c*d*x+d),x, algorithm="giac")

[Out]

integrate((b*arctanh(c*x) + a)^2/((c*d*x + d)*x), x)